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In this paper we propose a method to study critical systems numerically, which combines collective-mode
algorithms and renormalization group on the lattice. This method is an improved version of the Monte Carlo
renormalization group in the sense that it has all the advantages of cluster algorithms. As an application we
considered the 2D Ising model and studied whether scale invariance or universality are possible underlying
mechanisms responsible for the approximate “universal fluctuations” close to a so-called bulk temperature
T*(L). “Universal fluctuations” were first proposed in the work of Bramwell, Holdsworth, and Pinton [Nature
(London) 396, 552 (1998)] and stated that the probability density function of a global quantity for very
dissimilar systems, such as a confined turbulent flow and a two-dimensional (2D) magnetic system, properly
normalized to the first two moments, becomes similar to the “universal distribution,” originally obtained for
magnetization in the 2D XY model in the low-temperature region. The results for the critical exponents and the
renormalization-group flow of the probability density function are very accurate and show no evidence to
support that the approximate common shape of the PDF should be related to both scale invariance or universal

behavior.
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I. INTRODUCTION

Critical phenomena are present in a large number of quite
different physical systems: superfluid He-3, low-temperature
superconductors, ferromagnetic-paramagnetic systems, tur-
bulent fluids, plasmas, polymers, among many others. Nev-
ertheless, an important common feature of these systems is
the scale independent fluctuations at the critical temperature:
although the underlying intermolecular forces, responsible
for the existence of phase transitions, have a well-defined
length scale, the structures they give rise to do not. This
leads, very close to the critical temperature (scaling region),
to a power-law behavior of the physical quantities, which is
a fundamental feature of universality [1].

The main challenge of the theory of critical phenomena is
to explain how dissimilar systems exhibit the same critical
behavior. Renormalization-group (RG) theory developed by
Wilson and Kogut [2] provides a consistent framework to
understand the existence of equivalence classes of critical
systems. On the lattice, a very cunning method of applying a
RG analysis to Monte Carlo simulations of general systems
was first proposed in Ref. [3].

Nevertheless, the numerical simulation of critical systems
has a serious limitation due to the critical slowing down
effect. Indeed, as a critical system approaches the critical
temperature, the decorrelation time diverges with the power
of the correlation length of the system & to the dynamical
critical exponent z: 7~ &, where z is approximately 2 for
local-flip algorithms such as the Metropolis algorithm. In
order to beat or at least reduce this effect, a cluster algorithm
was first developed in Ref. [4].

In this paper, we develop a self-consistent method along
the line proposed by Swendsen in Ref. [3], which will be
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explained in Sec. II, to perform a lattice renormalization-
group (RG) analysis of the probability density function
(PDF) as a function of the magnetization, in the 2D Ising
model. His proposal amounts to compute by a direct Monte
Carlo simulation of the fundamental Hamiltonian, a se-
quence of approximations to the linearized RG matrix 7,g:.
From its eigenvalues the critical exponents can be obtained
in a direct way. In order to reduce critical slowing down, we
used instead of a local (Metropolis-type) algorithm the
collective-mode algorithm developed in Ref. [5] to simulate
the fundamental Hamiltonian. We call this method the cluster
algorithm renormalization group (CARG) [6].

Our physical motivation is to study, in the context of the
2D Ising model, whether scale invariance and universality
are the underlying mechanism which could give rise to the
approximate ‘“universal curve.” This phenomenon links a
large class of dissimilar systems defined on different dimen-
sions and including nonequilibrium systems, in which the
PDF of a global quantity—such as the power consumption in
a confined turbulent system or the magnetization in a finite
ferromagnetic system—properly normalized to the first two
moments, is described by a single curve [7]. This claim is not
free of controversy and in the last years it has been the cen-
tral task of several publications [8—15]. This “universal
curve” was shown to correspond to the PDF of the 2D-XY
model in the zero temperature limit [11].

The paper is organized as follows. In Sec. II the CARG
method is explained for a general critical system. In the third
section we explain the concept of approximate “universal
fluctuations” of the PDF of the magnetization for the 2D
Ising model. In Sec. IV the critical exponents v and 7 are
computed using fundamental lattices of lattice sizes L=45,
64, and 108, performing two and three RG steps, to check
the accuracy of the method. It is shown that relative errors of
the critical exponents increase monotonically with the depar-
ture from the critical temperature. Finally, the RG flow of the
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PDF itself is computed and it is shown that when conve-
niently normalized, it is invariant. The underlying reason for
this invariance is discussed in connection with the so-called
“generalized universality” conjecture. The results are dis-
cussed and conclusions are formulated in the last section.

II. THE CARG METHOD

To describe the method, we first introduce the notation.
We consider a model defined in a square lattice of lattice
spacing a, and linear size L, with periodic boundary condi-
tions (PBCs). The spin variables o; are defined on each site i
of the lattice and the Hamiltonian has the form

H=2KaSw (l)

where each S, is some kind of combination of the spin vari-
ables, with the only requirement of translation invariance
subject to PBCs. For our study we will consider the 2D Ising
model, including up to three even interactions (nearest neigh-
bor, second neighbor, and four spin) and one odd interaction
(a weak magnetic field).

The aim of RG theory is to study the critical properties of
a model. The critical exponents, for example, can be ob-
tained from the linearized RG transformation matrix Topss
defined in Eq. (8), by computing its eigenvalues. 7,4« can be
obtained numerically from the coupled equations

HSU) _s KL KSW)
oKy T oKy gk

(2)

Here, the superindices (n—1) and (n) denote the original
and the renormalized quantity, respectively, after one RG
transformation, and the thermal average (F(¢)) is defined by
the usual formula

(Flo)) = é% F(a)expl H(o)]. 3)

The left and right quantities appearing in Eq. (2) can be
obtained through the identities

5<S(]nﬁ)> _ <S(n)S(n—l)> <S(n)><S(ﬂ—1)> (4)
(9K(ﬁn—l) ALY BV CPAC) IR
5<S(3n5)> _ <S(n)S(n)> n (S(")XS(")) (5)
(9K(”) - Yy Ta Y @l

a

Due to the definition of the renormalized Hamiltonian, the
thermal expectation of any function F of the variables o)
yield the same value, whether one evaluates it using H" or
H" Y e,

L5 et
2" gy
1 e _py(n-1) O_(n—l)
:W 2 F(O'( 1))eH ( ). (6)

{0_(71—1)}

Therefore, the quantities appearing in Egs. (4) and (5) can
be computed directly by a numerical simulation of the origi-
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nal Hamiltonian on the fundamental lattice. Because the
simulations must be performed close to the critical point of
the system, the configurations produced by a local-update
algorithm are not statistically independent, which leads to
inaccurate thermal averages. This phenomenon is called in
the literature critical slowing down [1]. In order to avoid this
effect we use the collective-mode algorithm developed by
Wolff [5] for the Ising model.

The expectation values appearing in Egs. (4) and (5)
should be computed by using a simulation with a cluster
algorithm on the fundamental lattice. These numerical values
inserted into Eq. (2) lead to coupled algebraic equations,
which allow one to obtain a sequence of approximations to
the linearized RG transformation Tops» as the renormaliza-
tion transformation is iterated to the fixed point Hamiltonian
H*, defined in the vicinity of the fixed point by

K = K= 2 Tape(K = K o), @)
B

where the linearized RG transformation is defined by

[ K™ }
a3 n—
IKG™ |

To evaluate T, one in principle needs a “linear region”
close to the critical temperature, where its derivatives are
essentially constant. This region can be found by using FSS
analysis of the lattice shifted critical temperature [6], and in
the case of the 2D Ising model, by using the binder cumulant
(see Sec. IV).

Finally, the critical exponents are obtained from the eigen-
values of T, from Eq. (8) in the standard way. For the 2D
Ising model they are given by the fundamental relations v
=Ins/In ¢ and 7=d+2-2 In \¢/In b, where A< is the larg-
est even (odd) eigenvalue.

III. UNIVERSAL FLUCTUATIONS IN THE 2D ISING
MODEL

The two-dimensional Ising model is well known and it is
defined by the Hamiltonian

Hio) == 00, ©)
BE (i)

where o; is the spin variable defined on the lattice site i, J
>0 is the ferromagnetic constant, kg is the Boltzmann’s con-
stant, and =, ;y stands for sum over nearest neighbors (i, ).
We use a system of units where Boltzmann’s constant is set
equal to unity throughout the paper and identify 7 with the
reduced temperature 7/J. It is well known that for an infinite
square lattice (L— ), this model has a second order phase
transition at the critical temperature 7. defined by
sinh(1/T,)=1 or, equivalently, 7.=2/In[1+v(2)], which was
first computed by Onsager [16].

Universality of rare fluctuations in turbulence and critical
phenomena, as it was first proposed in Ref. [17], linked two
quite different physical systems: a confined turbulent flow
and the finite volume 2D XY model in the low temperature
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regime. The (generalized) universality of both systems was
based on the collapse of the probability distribution functions
of the corresponding global quantities, the power consump-
tion in the turbulent experiment and the magnetization in the
critical system. The PDFs were conveniently normalized to
their first two moments, and fell onto a common curve,
which was called “universal fluctuations.”

A further generalization of the phenomenon described
above was performed in Ref. [7], including nonequilibrium
models such as the autoigniting forest fire model and the
Bak-Tang-Wiesenfeld sandpile model, and the equilibrium
2D Ising model at temperature 7%(L), which they called
“bulk temperature.”

Nevertheless, using the 2D and 3D Ising model Zheng et
al. [8] showed a dependence of the “universal fluctuations”
on the equivalence class of the model. In a high precision
MC simulation of the finite volume 2D XY model, a slight
but systematic dependence of the “universal fluctuations” on
the system temperature was first suggested [9]. This claim
was proved analytically in Ref. [11]. Moreover, by comput-
ing the skewness and the kurtosis in the harmonic 2D XY
model (the second and third moments of the PDF) the tem-
perature dependence of the PDF was confirmed numerically
and analytically in Refs. [12,13], respectively.

The precise physical definition of T*(L) is still in
progress. In more recent papers, 7%(L) has been linked to
intermittency of the magnetization [14].

To address this issue we used the CARG method de-
scribed in the above section and we have simulated the 2D
Ising model in square lattices of sizes L=45, 64, and 108,
with periodic boundary conditions, in a range of tempera-
tures within the bulk 7%(L) and the lattice shifted critical
temperature 7,(L) which can be defined, for example, as the
temperature at which the magnetic susceptibility has a peak.

IV. NUMERICAL RESULTS

As it was mentioned in Sec. II, an estimation for the criti-
cal temperature for the 2D Ising model can be obtained by
using the binder cumulant [18]

1 (M%)

w(L,T)=1- §<M2>2.

(10)

where (M) is the averaged magnetization. It follows that
u(L,T) depends on the system size and temperature through
the ratio of the averaged fourth power to the averaged square

TABLE I. The critical exponents obtained by the CARG method
(PZ) and by Swendsen’s method (S) for L=45 are displayed.

RG step N N v 7

Ig 2.887 7.712 1.036 0.2812
Ipz 2.8900 7.7408 1.0352 0.2744
2g 3.006 7.835 0.998 0.2524
2py, 3.0083 7.8508 0.9975 0.2487
Exact 3 7.8452 1 0.250
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FIG. 1. The binder cumulant is shown for different lattice sizes.
From their interception the critical temperature for infinite volume
T.(0)=2.26903 + 0.00059 is obtained. It differs in 0.7 per one thou-
sand from Onsager’s exact result.

of the magnetization. Nevertheless, from finite size scaling
analysis, close to the critical temperature it is independent of
the lattice size and, therefore, the curves representing the
binder cumulant corresponding to different lattice sizes must
collapse onto one point. This behavior is displayed in Fig. 1.
The value obtained agrees with Onsager’s critical tempera-
ture within an error of 0.7 per one thousand.

Now we use the CARG method to compute the critical
exponents v and #, associated to the Ising model. In order to
compare with the results obtained in Ref. [3], we use a
square lattice of size L=45 to compute the quantities appear-
ing in the RG equations (4) and (5) close to the critical tem-
perature, obtained as explained above, and perform two RG
steps. Using the Wolff algorithm [5], 103 sweeps were used
to thermalize the system and 10° configurations were used to
compute thermal averages.

For the RG analysis up to three even interactions (nearest
neighbor, second neighbor, and four spin or plaquette) and
one odd interaction (magnetic field) were considered. In or-
der to compare our results with the corresponding ones ob-
tained by Ref. [3], we display in Table I the results of a
lattice of size L=45, where the scale factor b=3 was used.
After two RG steps, the values compare quite well. Com-
pared to their exact values of the infinite volume limit, they
agree up to 0.25% for v and 0.52% for 7.

In Table II we display the results for the critical exponents
v and 7, for a lattice of lattice size L=64. The scale factor
b=2 was used. The results are even better than with the

TABLE II. Critical exponents for L=64 and 7=2.259.

RG step N A v i

1 1.9586 3.6856 1.0311 0.2362
2 1.9986 3.6676 1.0010 0.2503
Exact 2 3.6680 1 0.250
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TABLE III. The critical exponents obtained by the CARG
method (PZ) and those obtained by Swendsen [19] for L=108.

RG step N A v 7

Is 2.852 7.705 1.048 0.2828
Ipz 2.8635 7.7062 1.0443 0.2825
2g 3.021 7.828 0.994 0.2540
2py, 3.0027 7.8269 0.9992 0.2542
3s 3.007 7.831 0.998 0.2534
3pz 3.0013 7.8361 0.9996 0.2521
Exact 3 7.8452 1 0.250

smaller lattice, with errors of order less than 0.13%. The
reason for this behavior is physically intuitive: An important
feature of the RG method is that the smallest system consid-
ered should be still large compared to the range of the fixed-
point Hamiltonian, so that any significant truncation should
be avoided. The validity of this requirement is improved with
the larger lattice sizes.

In spite of the good accuracy obtained for the critical
exponents performing only two RG steps, we iterated the RG
transformations to three RG steps in order to compare our
results with the ones obtained in Ref. [19]. The comparison
is displayed in Table III. Both methods achieve a remarkable
accuracy, compared to the exact results. The main difference
is related to the computational time needed to obtained these
values.

In order to compare both methods, we have measured the
computational time needed to obtain the critical exponents 7
and v first by using the Metropolis algorithm with a decor-
relation of five sweeps, and second by using the Wolff’s
algorithm without decorrelation. We used different lattice
sizes including L=64 and 162. In both cases 10° sweeps
were used to thermalize the system and 10* configurations
were used to compute thermal averages. When the ratio of
the computational time using the Metropolis algorithm to the
corresponding one by using the Wolff’s algorithm is mea-
sured, it turned out that the CARG method is faster than
Swendsen’s method by a factor which increases monotoni-
cally with the lattice size, from six for L=64 until ten for
L=162.

We want now to address the question of whether the
model displays or not a critical behavior at the bulk tempera-
ture 7%(L), which would lead to scale invariance of the sys-
tem. By definition, at 7*(L) the PDF of the magnetization
has a similar form to the distribution originally obtained for
the magnetization in the 2D XY model in the zero-
temperature limit [11]. The scale invariance is usually ex-
pressed as a power law behavior of the physical quantities
involved and therefore we use the CARG method to look for
critical exponents in the whole inertial range [T*(L), T.(L)]
[8].

In Ref. [14], T*(L) was defined as the temperature for
which the skewness (the third normalized moment of the
PDF of the magnetization) is equal to that for the 2D XY
model in the low-temperature region. According to this defi-
nition, and for a lattice of lattice size L=64 the numerical
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FIG. 2. Relative errors for the critical exponents » and v ob-
tained in the second renormalization step with lattice size L=64 and
NAV=10°. The minimum error occurs at 7,.(64)=2.259 and the
critical exponents for this temperature are shown in Table II.

value T%(L)=2.11 was found. In this article it was argued
that at 7%(L) there are (strong) correlations on all scales up to
a length of the order of the system size L, which is an im-
portant feature of critical behavior. Furthermore, the fluctua-
tions of the magnetization were linked to intermittency. To
address this issue we have simulated a lattice with L=64 as
well.

In Fig. 2, the relative errors between the exact values of
the infinite volume critical exponents v and 7 and the corre-
sponding numerical result are displayed as a function of the
system temperature. They are expressed in percents and from
this figure we conclude that the relative errors increase
monotonically as the temperature moves away from 7.(L),
which includes the particular value 7%(L), at which the rela-
tive errors are large. It is therefore rather unjustified to ex-
pect scale invariance of the physical quantities close to
T*(L).

Now we study a possible scaling behavior of the order
parameter—the magnetization—in the vicinity of both the
bulk and the shifted critical temperatures [T*(L) and T.(L)],
respectively. It is well known that the magnetization near the
critical temperature behaves as a power law of the kind

(M)~ 7, (11)
where the reduced temperature 7 is given by

_|T-T.(L)]

) (12

and f3 is the critical exponent. A direct numerical computa-
tion of this exponent is rather subtle because of the reflection
symmetry of the Hamiltonian (9), which leads in numerical
simulations close to the phase transition to the use of the
absolute value of the magnetization instead of the magneti-
zation itself. One can instead compute S by using the scaling
relation B=v(d+n-2)/2.
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FIG. 3. PDFs (raw and normalized data) for the fundamental
lattice (L=64) at temperature 7.(L)=2.3008 and for the two coarse
grained lattices (L=32 and L=16).

In Ref. [14] the stochastic evolution of the magnetization
was computed and it was argued that the system displays
“larger fluctuations” at T#(L) than at T.(L). This apparent
phenomenon has been called “intermittency.” Nevertheless,
according to the discussion associated with Fig. 2, no under-
lying scale invariance is responsible for this phenomenon.
This apparent behavior is rather related to the fact that, in
order to avoid metastable states in numerical simulations, the
observable used in MC simulations is the absolute value of
the magnetization instead of the magnetization itself. This
quantity is bounded from below and therefore at T.(L) its
fluctuations appear suppressed by a factor of order 2 com-
pared to the corresponding at 7%(L), where this lower bound
plays no role as the magnetization does not vanishes in its
neighborhood.

RG flow of the probability density function. We proceed to
study of the PDF by using the CARG method. In particular
we have computed the RG flow of the PDF starting on a
square lattice of size L=64, which we called fundamental
lattice, and which we denote by A. We have performed two
RG transformations. Two further lattices were defined with
lattice sizes L=32 and 16, which are denoted by A’ and A",
respectively. In Fig. 3 the PDF is displayed for the three
lattices. It follows that, properly normalized to the first two
moments, the PDF remains invariant along a renormalized
trajectory, the see second graphic in Fig. 3. For the present
computation we used Swendsen-Wang’s cluster algorithm [4]
to update the fundamental lattice. We used the block spin
parameter b=2 and T.(L=64)=2.3008 for the lattice shifted
critical temperature.

The invariance of the PDF under RG transformations can
be understood by observing that it can be written as a Fourier
transform of a partition function of an auxiliary theory,
which differs from the original theory by a dimension zero
perturbation, with a very small imaginary coefficient. This
was first pointed out in Ref. [11]. From the RG theory we
know that partition functions are invariant under RG trans-
formations.
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FIG. 4. The PDF is displayed for temperatures in the “inertial
range” and for the lattice size L=64.

Finally we plot in Fig. 4 the PDF in the whole “inertial
range” of temperatures. The curves depend slightly on the
temperature close to 7%(L), but this particular value, as we
have argued, is not related to scale invariance or power law
behavior of the system. Moreover, different curves normal-
ized to the first two moments are difficult to distinguish from
one another, close to the maximum. This has been pointed
out in Ref. [15], where the PDF at the particular value T%(L)
was fitted by a Gumbel distribution, which plays an impor-
tant role in statistics of extremes.

V. CONCLUSIONS

In this paper we have introduced a very accurate method,
which we call the CARG method, to study critical systems
close to a critical point. Compared to the original method
proposed by Swendsen, our method is faster by a factor
which grows linearly with the lattice size from 6 for L=64
until 10 for L=162, due to the use of cluster algorithms to
simulate the fundamental Hamiltonian. This advantage al-
lows us to simulate larger lattices in reasonable computa-
tional times, and to improve the accuracy of the results, as
shown in Table III.

We illustrated the method by using the 2D Ising model
defined in a square lattice of lattice size L, and we have
shown how to obtain very accurate values for the critical
exponents without the previous knowledge of the critical
temperature. We used further the 2D Ising model to study
scale invariance and universality as the underlying mecha-
nism which could give rise to the approximate generalized
universal behavior of fluctuations. We computed the prob-
ability density function (PDF) of the magnetization and its
RG trajectory close to the lattice shifted critical temperature.

Critical behavior is associated with scale invariance,
which is commonly represented as a power law behavior: the
physical quantities are described close enough to a critical
point, by critical exponents, which characterize the equiva-
lence class the system belongs to. In the special case of the
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2D Ising model, from Fig. 2 we conclude that, at the bulk
temperature 7%(L), neither scale invariance nor universal be-
havior is really present. Therefore the approximate collapse
of the PDF onto the “universal distribution” seems not to be
related to critical behavior but rather to a numerical phenom-
enon associated to approximated scaling relations and ex-
treme statistics, as proposed in Ref. [15], and to the con-
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straint character of the global quantity used to compute the
PDF.
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